These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Subprosthetic Pannus after Aortic Valve Replacement Surgery: Cardiac CT Findings and Clinical Features.
    Author: Han K, Yang DH, Shin SY, Kim N, Kang JW, Kim DH, Song JM, Kang DH, Song JK, Kim JB, Jung SH, Choo SJ, Chung CH, Lee JW, Lim TH.
    Journal: Radiology; 2015 Sep; 276(3):724-31. PubMed ID: 25902187.
    Abstract:
    PURPOSE: To investigate the cardiac computed tomographic (CT) findings and clinical implications of subprosthetic pannus in patients who have undergone aortic valve replacement. MATERIALS AND METHODS: The institutional review board approved this retrospective study, and the need to obtain written informed consent was waived. From April 2011 to March 2012, 88 patients (mean age, 63 years; 45 men) with a prosthetic aortic valve who underwent cardiac CT were retrospectively selected. Dynamic cardiac CT images were analyzed by using a multiplanar reformatted technique. The presence or absence of subprosthetic pannus and its extent were evaluated at cardiac CT. The geometric orifice area and the effective orifice area of each prosthetic valve were measured to enable analysis of the pannus encroachment ratio in the systolic phase. Hemodynamic parameters at echocardiography, including mean transprosthetic pressure gradient (MTPG), were compared between patients with and those without pannus. The encroachment ratio and the MTPG were correlated by using the Spearman test to evaluate the relationship between the two variables. RESULTS: Seventeen patients (19%) had subprosthetic pannus at cardiac CT. In patients with subprosthetic pannus, MTPG, peak pressure gradient, transvalvular peak velocity, and left ventricular ejection fraction (LVEF) were significantly higher than in patients without pannus (MTPG: 28.1 mm Hg ± 19.8 [standard deviation] vs 14.0 mm Hg ± 6.5, P = .004; peak pressure gradient: 53.1 mm Hg ± 38.4 vs 26.1 mm Hg ± 11.4, P = .004; transvalvular peak velocity: 3.3 m/sec ± 1.3 vs 2.5 m/sec ± 0.5; and LVEF: 64.7% ± 7.4 vs 56.8% ± 10.5, P = .004). A high MTPG (≥40 mm Hg) was observed in four patients at echocardiography, and subprosthetic panni were identified at CT in all four patients. In patients with increased MTPGs, the encroachment ratio by subprosthetic pannus at CT was significantly higher than that in patients with MTPGs of less than 40 mm Hg (42.7 ± 13.3 vs 7.6 ± 3, P = .012). CONCLUSION: Cardiac CT revealed subprosthetic pannus to be a cause of the hemodynamic changes in patients who had undergone aortic valve replacement. By helping quantify the encroachment ratio by pannus, cardiac CT may help differentiate which subprosthetic panni might lead to substantial flow limitation over the prosthetic aortic valve.
    [Abstract] [Full Text] [Related] [New Search]