These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Manganese oxide and docetaxel co-loaded fluorescent polymer nanoparticles for dual modal imaging and chemotherapy of breast cancer.
    Author: Abbasi AZ, Prasad P, Cai P, He C, Foltz WD, Amini MA, Gordijo CR, Rauth AM, Wu XY.
    Journal: J Control Release; 2015 Jul 10; 209():186-96. PubMed ID: 25908171.
    Abstract:
    Multifunctional nanoparticles (NPs) have found important applications in diagnosis, chemotherapy, and image-guided surgery of tumors. In this work, we have developed polymeric theranostic NPs (PTNPs) containing the anticancer drug docetaxel (DTX), a fluorescent dye, and magnetic manganese oxide (MnO) NPs for dual modal imaging and chemotherapy. PTNPs ~150 nm in diameter were synthesized by co-loading hydrophobic DTX and MnO NPs ~5 nm in diameter, into the matrix of a fluorescent dye-labeled amphiphilic polymer. The PTNPs enabled high loading efficiency and sustained in vitro release of DTX. Energy-dependent cellular uptake and extended cytoplasmic retention of the PTNPs in MDA-MB-231 human breast cancer cells were observed by fluorescence microscopy examination. DTX-loaded PTNPs exhibited higher cytotoxicity than free DTX with a 3 to 4.4-fold decrease in drug dose required for 50% cell growth inhibition. The hydrophilic backbone of the amphiphilic polymer improved the fluidity of PTNPs which enhanced the longitudinal relaxivity (r1) of loaded MnO NPs by 2.7-fold with r1=2.4mM(-1)s(-1). Whole body fluorescence imaging (FI) and magnetic resonance imaging (MRI) showed significant accumulation and prolonged retention of PTNPs in orthotopic MDA-MB-231 breast tumors. These results suggest that the new amphiphilic polymer-based PTNP system, able to simultaneously deliver a poorly soluble anticancer drug, enhance MRI contrast, and stain tumor tissue by fluorescence, is a good candidate for cancer theranostic applications.
    [Abstract] [Full Text] [Related] [New Search]