These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tumor-suppressive p53 Signaling Empowers Metastatic Inhibitor KLF17-dependent Transcription to Overcome Tumorigenesis in Non-small Cell Lung Cancer.
    Author: Ali A, Bhatti MZ, Shah AS, Duong HQ, Alkreathy HM, Mohammad SF, Khan RA, Ahmad A.
    Journal: J Biol Chem; 2015 Aug 28; 290(35):21336-51. PubMed ID: 25911104.
    Abstract:
    Metastasis, which is controlled by concerted action of multiple genes, is a complex process and is an important cause of cancer death. Krüppel-like factor 17 (KLF17) is a negative regulator of metastasis and epithelial-mesenchymal transition (EMT) during cancer progression. However, the underlying molecular mechanism and biological relevance of KLF17 in cancer cells are poorly understood. Here, we show that tumor suppressor protein p53 plays an integral role to induce KLF17 expression in non-small cell lung cancer (NSCLC). p53 is recruited to the KLF17 promoter and results in the formation of p53-DNA complex. p53 enhances binding of p300 and favors histone acetylation on the KLF17 promoter. Mechanistically, p53 physically interacts with KLF17 and thereby enhances the anti-metastatic function of KLF17. p53 empowers KLF17-mediated EMT genes transcription via enhancing physical association of KLF17 with target gene promoters. Nutlin-3 recruits KLF17 to EMT target gene promoters and results in the formation of KLF17-DNA complex via a p53-dependent pathway. p53 depletion abrogates DNA binding affinity of KLF17 to EMT target gene promoters. KLF17 is critical for p53 cellular activities in NSCLC. Importantly, KLF17 enhances p53 transcription to generate a novel positive feedback loop. KLF17 depletion accelerates lung cancer cell growth in response to chemotherapy. Mechanistically, we found that KLF17 increases the expression of tumor suppressor genes p53, p21, and pRB. Functionally, KLF17 required p53 to suppress cancer cell invasion and migration in NSCLC. In conclusion, our study highlights a novel insight into the anti-EMT effect of KLF17 via a p53-dependent pathway in NSCLC, and KLF17 may be a new therapeutic target in NSCLC with p53 status.
    [Abstract] [Full Text] [Related] [New Search]