These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Facilitation of quadriceps motoneurones by group I afferents from pretibial flexors in man. 1. Possible interneuronal pathway.
    Author: Forget R, Pantieri R, Pierrot-Deseilligny E, Shindo M, Tanaka R.
    Journal: Exp Brain Res; 1989; 78(1):10-20. PubMed ID: 2591506.
    Abstract:
    The neuronal pathway of the facilitation of quadriceps (Q) motoneurones (MNs) evoked by stimulation of the common peroneal nerve (CPN) has been reinvestigated using both the post-stimulus time histogram (PSTH) method for measurement of the firing probability of individual units and the H reflex technique. It has been found that Ia (and to an unknown extent Ib) afferents from pretibial flexors - but not from peroneal muscles - are responsible for this excitation. The central latency of the CPN-induced excitation of Q MNs was estimated to be 3-3.7 ms longer than that of their monosynaptic Ia excitation. To further investigate the neuronal pathway of the CPN-induced excitation the spatial facilitation technique was used, the effects on the Q H reflex of two conditioning stimuli (applied to the CPN and the femoral nerve - FN) being compared when applied separately and together. When the two conditioning volleys were timed to reach the spinal cord simultaneously the facilitation of the H reflex on combined stimulation was larger than the algebraic sum of the effects by separate stimuli in 40% of the cases. It is argued that this additional facilitation reflects summation at a premotoneuronal level and it is concluded that non-monosynaptic Ia excitation of Q MNs from Q and pretibial flexors is, at least partly, mediated through a common pathway. In those individual units in which stimulation of the FN and/or the CPN evoked a non-monosynaptic Ia excitation, this excitation was reduced on combined stimulation of the two nerves. It is argued that this reflects inhibition of the interneurones mediating the excitation, i.e. consists in a disfacilitation of the MNs. It is suggested that the non-monosynaptic (homonymous and heteronymous) Ia excitation of Q MNs in man (and the inhibition of this excitation) is mediated through a system of neurones similar to the system recently described in the cat by Edgley and Jankowska (1987).
    [Abstract] [Full Text] [Related] [New Search]