These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MicroRNA-155 aggravates ischemia-reperfusion injury by modulation of inflammatory cell recruitment and the respiratory oxidative burst. Author: Eisenhardt SU, Weiss JB, Smolka C, Maxeiner J, Pankratz F, Bemtgen X, Kustermann M, Thiele JR, Schmidt Y, Bjoern Stark G, Moser M, Bode C, Grundmann S. Journal: Basic Res Cardiol; 2015 May; 110(3):32. PubMed ID: 25916938. Abstract: The inflammatory sequelae of ischemia-reperfusion injury (IRI) are a major causal factor of tissue injury in various clinical settings. MicroRNAs (miRs) are short, non-coding RNAs, which regulate protein expression. Here, we investigated the role of miR-155 in IR-related tissue injury. Quantifying microRNA-expression levels in a human muscle tissue after IRI, we found miR-155 expression to be significantly increased and to correlate with the increased expression of TNF-α, IL-1β, CD105, and Caspase3 as well as with leukocyte infiltration. The direct miR-155 target gene SOCS-1 was downregulated. In a mouse model of myocardial infarction, temporary LAD ligation and reperfusion injury resulted in a smaller area of necrosis in miR-155-/- animals compared to wildtype animals. To investigate the underlying mechanisms, we evaluated the effect of miR-155 on inflammatory cell recruitment by intravital microscopy and on the generation of reactive oxygen species (ROS) of macrophages. Our intravital imaging results demonstrated a decreased recruitment of inflammatory cells in miR-155-/- animals during IRI. The generation of ROS in leukocytic cells of miR-155-/- animals was also reduced. RNA silencing of the direct miR-155 target gene SOCS-1 abrogated this effect. In conclusion, miR-155 aggravates the inflammatory response, leukocyte infiltration and tissue damage in IRI via modulation of SOCS-1-dependent generation of ROS. MiR-155 is thus a potential target for the treatment or prevention of IRI.[Abstract] [Full Text] [Related] [New Search]