These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: FOXO1 differentially regulates both normal and diabetic wound healing.
    Author: Zhang C, Ponugoti B, Tian C, Xu F, Tarapore R, Batres A, Alsadun S, Lim J, Dong G, Graves DT.
    Journal: J Cell Biol; 2015 Apr 27; 209(2):289-303. PubMed ID: 25918228.
    Abstract:
    Healing is delayed in diabetic wounds. We previously demonstrated that lineage-specific Foxo1 deletion in keratinocytes interfered with normal wound healing and keratinocyte migration. Surprisingly, the same deletion of Foxo1 in diabetic wounds had the opposite effect, significantly improving the healing response. In normal glucose media, forkhead box O1 (FOXO1) enhanced keratinocyte migration through up-regulating TGFβ1. In high glucose, FOXO1 nuclear localization was induced but FOXO1 did not bind to the TGFβ1 promoter or stimulate TGFβ1 transcription. Instead, in high glucose, FOXO1 enhanced expression of serpin peptidase inhibitor, clade B (ovalbumin), member 2 (SERPINB2), and chemokine (C-C motif) ligand 20 (CCL20). The impact of high glucose on keratinocyte migration was rescued by silencing FOXO1, by reducing SERPINB2 or CCL20, or by insulin treatment. In addition, an advanced glycation end product and tumor necrosis factor had a similar regulatory effect on FOXO1 and its downstream targets and inhibited keratinocyte migration in a FOXO1-dependent manner. Thus, FOXO1 expression can positively or negatively modulate keratinocyte migration and wound healing by its differential effect on downstream targets modulated by factors present in diabetic healing.
    [Abstract] [Full Text] [Related] [New Search]