These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: N-Acetyl-D-glucosamine decorated polymeric nanoparticles for targeted delivery of doxorubicin: Synthesis, characterization and in vitro evaluation.
    Author: Tian B, Ding Y, Han J, Zhang J, Han Y, Han J.
    Journal: Colloids Surf B Biointerfaces; 2015 Jun 01; 130():246-54. PubMed ID: 25921641.
    Abstract:
    A novel targeting drug delivery system containing poly(styrene-alt-maleic anhydride)58-b-polystyrene130 (P(St-alt-MA)58-b-PSt130) as a copolymer backbone, N-acetyl glucosamine (NAG) as a targeting moiety was designed and synthesized. The NAG grafted copolymer (NAG-P(St-alt-MA)58-b-PSt130) was characterized by FTIR and (1)H NMR. The NAG-P(St-alt-MA)58-b-PSt130 nanoparticles exhibited spherical shapes with an average diameter about 56.27±0.43 nm, low critical micelle concentration of 0.028 mg/mL, negative zeta potential -41.46±0.99 mV, high drug loading 25.83±1.09% and encapsulation efficiency 69.69±3.98%. In vitro cell cytotoxicity was conducted to confirm the safety of the NAG-P(St-alt-MA)58-b-PSt130 nanoparticles. Confocal laser scanning microscopy (CLSM) and flow cytometry (FCM) results showed that the NAG targeting moiety enhanced the internalization and targeting ability of NAG-P(St-alt-MA)58-b-PSt130 nanoparticles. Anticancer activity toward MCF-7 cells and HT29 cells showed that DOX-loaded NAG-P(St-alt-MA)58-b-PSt130 nanoparticles exhibited a higher antitumor activity compared to DOX-loaded P(St-alt-MA)58-b-PSt130 nanoparticles, which could attribute to NAG receptor-mediated endocytosis. These results suggest that the biocompatible and non-toxic NAG-P(St-alt-MA)58-b-PSt130 nanoparticles may be used as an effective targeting drug delivery system for cancer therapy.
    [Abstract] [Full Text] [Related] [New Search]