These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Changes in the cross-linking of collagen from rat tail tendons due to diabetes.
    Author: Brennan M.
    Journal: J Biol Chem; 1989 Dec 15; 264(35):20953-60. PubMed ID: 2592360.
    Abstract:
    The acid solubility of Type I collagen from rat tail tendons decreases due to diabetes. This finding has been taken as evidence that collagen from diabetics may be more cross-linked than normal. We compared CNBr peptide maps prepared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for [3H] NaBH4-reduced tail tendons from streptozotocin-diabetic rats with maps from age-matched control rats. At least through 30 weeks of diabetes, the distribution of mass of both cross-linked and uncross-linked CNBr peptides was identical in diabetic and control tendons. Therefore, the number of cross-linked peptides did not increase due to diabetes. We analyzed the 3H-cross-linking compounds present on the CNBr peptides and found that the 3H content of peptides cross-linked in control tendons through the bivalent, reduced cross-links hydroxylysinonorleucine and lysinonorleucine was diminished on corresponding peptides from diabetic tendons as a function of duration of diabetes. The cross-linked peptides, however, persisted. Therefore, we conclude that a larger fraction of these bivalent cross-links is found in an unknown, non-reducible form in tendons from diabetic compared with control rats. This resembles a phenomenon normally associated with maturation and/or aging where the non-reducible form of the cross-links is acid-stable. An increase in the fraction of the cross-links that is non-reducible and acid-stable would explain, at least in part, the decrease in acid solubility of the collagen. Non-enzymatic glycation (NEG) was not very specific, since most CNBr peptides bound some glucose. However, peptides from the alpha 2-chain seemed to be preferential targets for NEG. While NEG clearly increased due to diabetes, we found no evidence that increased NEG led to an increased number of cross-links in tail tendon collagen from streptozotocin diabetic rats.
    [Abstract] [Full Text] [Related] [New Search]