These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nanocarriers and their Actions to Improve Skin Permeability and Transdermal Drug Delivery.
    Author: Khan NR, Harun MS, Nawaz A, Harjoh N, Wong TW.
    Journal: Curr Pharm Des; 2015; 21(20):2848-66. PubMed ID: 25925113.
    Abstract:
    Transdermal drug delivery is impeded by the natural barrier of epidermis namely stratum corneum. This limits the route to transport of drugs with a log octanol-water partition coefficient of 1 to 3, molecular weight of less than 500 Da and melting point of less than 200°C. Nanotechnology has received widespread investigation as nanocarriers are deemed to be able to fluidize the stratum corneum as a function of size, shape, surface charges, and hydrophilicity-hydrophobicity balance, while delivering drugs across the skin barrier. This review provides an overview and update on the latest designs of liposomes, ethosomes, transfersomes, niosomes, magnetosomes, oilin- water nanoemulsions, water-in-oil nanoemulsions, bicontinuous nanoemulsions, covalently crosslinked polysaccharide nanoparticles, ionically crosslinked polysaccharide nanoparticles, polyelectrolyte coacervated nanoparticles and hydrophobically modified polysaccharide nanoparticles with respect to their ability to fuse or fluidize lipid/protein/tight junction regimes of skin, and effect changes in skin permeability and drug flux. Universal relationships of nanocarrier size, zeta potential and chemical composition on transdermal permeation characteristics of drugs will be developed and discussed.
    [Abstract] [Full Text] [Related] [New Search]