These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glomerular hemodynamics in established glycerol-induced acute renal failure in the rat. Author: Wolfert AI, Oken DE. Journal: J Clin Invest; 1989 Dec; 84(6):1967-73. PubMed ID: 2592568. Abstract: The glomerular dynamic correlates of failed filtration were studied in volume replete rats with established glycerol-induced acute renal failure (ARF). Over one-half of all nephrons formed virtually no filtrate, while the single nephron glomerular filtration rate (SNGFR) of fluid-filled nephrons, measured at the glomerulotubular junction to preclude the possibility of covert tubular leakage, averaged one-sixth of control (P less than 0.001). Even that low mean value was elevated by a few nephrons with a near normal SNGFR. Renal failure thus reflected both total filtration failure in the majority of nephrons and massively reduced filtration in most of the remainder. Glomerular capillary pressure (Pg) averaged some 14 mmHg below control (P less than 0.001), whereas the arterial colloid osmotic and Bowman's space pressures were not significantly altered. Renocortical and whole kidney blood flow were also unchanged. Marked internephron functional heterogeneity precluded estimates of the ultrafiltration coefficient. However, the fall in SNGFR correlated well with the markedly depressed Pg and afferent net filtration pressure (delta PnetA, P less than 0.001), which in turn were caused by increased preglomerular resistance and a reciprocal fall in efferent arteriolar resistance. This complex change in intrarenal resistances was largely, if not entirely, responsible for failed filtration in this ARF model.[Abstract] [Full Text] [Related] [New Search]