These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lower-body negative pressure restores leg bone microvascular flow to supine levels during head-down tilt.
    Author: Siamwala JH, Lee PC, Macias BR, Hargens AR.
    Journal: J Appl Physiol (1985); 2015 Jul 15; 119(2):101-9. PubMed ID: 25930022.
    Abstract:
    Skeletal unloading and cephalic fluid shifts in microgravity may alter the bone microvascular flow and may be associated with the 1-2% bone loss per month during spaceflight. The purpose of this study was to determine if lower-body negative pressure (LBNP) can prevent microgravity-induced alterations of tibial microvascular flow. Head-down tilt (HDT) simulates the cephalad fluid shift and microvascular flow responses that may occur in microgravity. We hypothesized that LBNP prevents HDT-induced increases in tibial microvascular flow. Tibial bone microvascular flow, oxygenation, and calf circumference were measured during 5 min sitting, 5 min supine, 5 min 15° HDT, and 10 min 15° HDT with 25 mmHg LBNP using photoplethysmography (PPG), near-infrared spectroscopy (NIRS), and strain-gauge plethysmography (SGP). Measurements were made simultaneously. Tibial microvascular flow increased by 36% with 5 min 15° HDT [2.2 ± 1.1 V; repeated-measures ANOVA (RMANOVA) P < 0.0001] from supine (1.4 ± 0.8 V). After 10 min of LBNP in the 15° HDT position, tibial microvascular flow returned to supine levels (1.1 ± 0.5 V; RMANOVA P < 0.001). Tibial oxygenation did not change significantly during sitting, supine, HDT, or HDT with LBNP. However, calf circumference decreased with 5 min 15° HDT (-0.7 ± 0.4 V; RMANOVA P < 0.0001) from supine (-0.5 ± 0.4 V). However, with LBNP calf circumference returned to supine levels (-0.4 ± 0.1 V; RMANOVA P = 0.002). These data establish that simulated microgravity increases tibial microvascular flow and LBNP prevents these increases. The results suggest that LBNP may provide a suitable countermeasure to normalize the bone microvascular flow during spaceflight.
    [Abstract] [Full Text] [Related] [New Search]