These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Particle coating-dependent interaction of molecular weight fractionated natural organic matter: impacts on the aggregation of silver nanoparticles.
    Author: Yin Y, Shen M, Tan Z, Yu S, Liu J, Jiang G.
    Journal: Environ Sci Technol; 2015 Jun 02; 49(11):6581-9. PubMed ID: 25941838.
    Abstract:
    Ubiquitous natural organic matter (NOM) plays an important role in the aggregation state of engineered silver nanoparticles (AgNPs) in aquatic environment, which determines the transport, transformation, and toxicity of AgNPs. As various capping agents are used as coatings for nanoparticles and NOM are natural polymer mixture with wide molecular weight (MW) distribution, probing the particle coating-dependent interaction of MW fractionated natural organic matter (Mf-NOM) with various coatings is helpful for understanding the differential aggregation and transport behavior of engineered AgNPs as well as other metal nanoparticles. In this study, we investigated the role of pristine and Mf-NOM on the aggregation of AgNPs with Bare, citrate, and PVP coating (Bare-, Cit-, and PVP-AgNP) in mono- and divalent electrolyte solutions. We observed that the enhanced aggregation or dispersion of AgNPs in NOM solution highly depends on the coating of AgNPs. Pristine NOM inhibited the aggregation of Bare-AgNPs but enhanced the aggregation of PVP-AgNPs. In addition, Mf-NOM fractions have distinguishing roles on the aggregation and dispersion of AgNPs, which also highly depend on the AgNPs coating as well as the MW of Mf-NOM. Higher MW Mf-NOM (>100 kDa and 30-100 kDa) enhanced the aggregation of PVP-AgNPs in mono- and divalent electrolyte solutions, whereas lower MW Mf-NOM (10-30 kDa, 3-10 kDa and <3 kDa) inhibited the aggregation of PVP-AgNPs. However, all the Mf-NOM fractions inhibited the aggregation of Bare-AgNPs. For PVP- and Bare-AgNPs, the stability of AgNPs in electrolyte solution was significantly correlated to the MW of Mf-NOM. But for Cit-AgNPs, pristine NOM and Mf-NOM has minor influence on the stability of AgNPs. These findings about significantly different roles of Mf-NOM on aggregation of engineered AgNPs with various coating are important for better understanding of the transport and subsequent transformation of AgNPs in aquatic environment.
    [Abstract] [Full Text] [Related] [New Search]