These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effects of α-zearalanol on the proliferation of bone-marrow-derived mesenchymal stem cells and their differentiation into osteoblasts. Author: Zong S, Zeng G, Fang Y, Peng J, Zou B, Gao T, Zhao J. Journal: J Bone Miner Metab; 2016 Mar; 34(2):151-60. PubMed ID: 25944420. Abstract: The aim of this study was to explore the effects of α-zearalanol (α-ZAL) on the proliferation of mouse bone-marrow-derived mesenchymal stem cells (BMSCs) and their differentiation into osteoblasts. Six- to eight-week-old BALB/C mice were used either as recipients or as bone marrow donors. BMSCs were isolated and collected using a differential adhesion method, with use of 10 % fetal bovine serum and Iscove's modified Dulbecco's medium. After the third generation, the BMSCs were randomly placed into the following subgroups: a control group, an osteogenic medium (OM) group, a 17β-estradiol group, an α-ZAL 10(-7) mol/L group, an α-ZAL 10(-6) mol/L group, and an α-ZAL 10(-5) mol/L group. Flow cytometry was used to identify the BMSCs collected from the bone marrow. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test was performed, and markers of the osteoblasts were measured in the different subgroups. In addition, expression of osteoprotegerin and expression of receptor activator of nuclear factor κB ligand were examined using Western blot. In contrast to the control and OM groups, BMSCs in the α-ZAL groups exhibited long fusiform shapes, and contact inhibition was observed when the cells were closely packed. After induction, the BMSCs grew well and exhibited triangular, star, polygonal, or irregular shapes. Clumps and multiple cells were evident. The trends of the proliferation and differentiation for the control, OM, 17β-estradiol, and α-ZAL groups were similar. Compared with the control and OM groups, in the α-ZAL groups the expression levels of alkaline phosphatase, procollagen type I N-terminal propeptide, bone morphogenetic protein 2, and osteocalcin were significantly increased (p < 0.05). In addition, α-ZAL inhibited osteoclastogenesis by increasing the expression of osteoprotegerin and decreasing the expression of nuclear factor κB ligand. In conclusion, α-ZAL can increase the proliferation of BMSCs and their differentiation into osteoblasts and can effectively suppress osteoclastogenesis.[Abstract] [Full Text] [Related] [New Search]