These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impact of Exogenous Galectin-9 on Human T Cells: CONTRIBUTION OF THE T CELL RECEPTOR COMPLEX TO ANTIGEN-INDEPENDENT ACTIVATION BUT NOT TO APOPTOSIS INDUCTION.
    Author: Lhuillier C, Barjon C, Niki T, Gelin A, Praz F, Morales O, Souquere S, Hirashima M, Wei M, Dellis O, Busson P.
    Journal: J Biol Chem; 2015 Jul 03; 290(27):16797-811. PubMed ID: 25947381.
    Abstract:
    Galectin-9 (gal-9) is a multifunctional β-galactoside-binding lectin, frequently released in the extracellular medium, where it acts as a pleiotropic immune modulator. Despite its overall immunosuppressive effects, a recent study has reported bimodal action of gal-9 on human resting blood T cells with apoptosis occurring in the majority of them, followed by a wave of activation and expansion of Th1 cells in the surviving population. Our knowledge of the signaling events triggered by exogenous gal-9 in T cells remains limited. One of these events is cytosolic calcium (Ca(2+)) release reported in some murine and human T cells. The aim of this study was to investigate the contribution of Ca(2+) mobilization to apoptotic and nonapoptotic effects of exogenous gal-9 in human T cells. We found that the T cell receptor (TCR)-CD3 complex and the Lck kinase were required for Ca(2+) mobilization but not for apoptosis induction in Jurkat cells. These data were confirmed in human CD4(+) T cells from peripheral blood as follows: a specific Lck chemical inhibitor abrogated Ca(2+) mobilization but not apoptosis induction. Moreover, Lck activity was also required for the production of Th1-type cytokines, i.e. interleukin-2 and interferon-γ, which resulted from gal-9 stimulation in peripheral CD4(+) T cells. These findings indicate that gal-9 acts on T cells by two distinct pathways as follows: one mimicking antigen-specific activation of the TCR with a mandatory contribution of proximal elements of the TCR complex, especially Lck, and another resulting in apoptosis that is independent of this complex.
    [Abstract] [Full Text] [Related] [New Search]