These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: De novo-induced self-antigen-specific Foxp3+ regulatory T cells impair the accumulation of inflammatory dendritic cells in draining lymph nodes.
    Author: Alissafi T, Hatzioannou A, Ioannou M, Sparwasser T, Grün JR, Grützkau A, Verginis P.
    Journal: J Immunol; 2015 Jun 15; 194(12):5812-24. PubMed ID: 25948818.
    Abstract:
    Foxp3(+) regulatory T cell (Treg)-based immunotherapy holds promise for autoimmune diseases. However, this effort has been hampered by major caveats, including the low frequency of autoantigen-specific Foxp3(+) Tregs and lack of understanding of their molecular and cellular targets, in an unmanipulated wild-type (WT) immune repertoire. In this study, we demonstrate that infusion of myelin in WT mice results in the de novo induction of myelin-specific Foxp3(+) Tregs in WT mice and amelioration of experimental autoimmune encephalomyelitis. Myelin-specific Foxp3(+) Tregs exerted their effect both by diminishing Ag-bearing inflammatory dendritic cell (iDC) recruitment to lymph nodes and by impairing their function. Transcriptome analysis of ex vivo-isolated Treg-exposed iDCs showed significant enrichment of transcripts involved in functional properties of iDCs, including chemotaxis-related genes. To this end, CCR7 expression by iDCs was significantly downregulated in tolerant mice and this was tightly regulated by the presence of IL-10. Collectively, our data demonstrate a novel model for deciphering the Ag-specific Foxp3(+) Treg-mediated mechanisms of tolerance and delineate iDCs as a Foxp3(+) Treg cellular target in unmanipulated mice.
    [Abstract] [Full Text] [Related] [New Search]