These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Screening the molecular targets of ovarian cancer based on bioinformatics analysis.
    Author: Du L, Qian X, Dai C, Wang L, Huang D, Wang S, Shen X.
    Journal: Tumori; 2015; 101(4):384-9. PubMed ID: 25953442.
    Abstract:
    AIMS AND BACKGROUND: Ovarian cancer (OC) is the most lethal gynecologic malignancy. This study aims to explore the molecular mechanisms of OC and identify potential molecular targets for OC treatment. METHODS AND STUDY DESIGN: Microarray gene expression data (GSE14407) including 12 normal ovarian surface epithelia samples and 12 OC epithelia samples were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) between 2 kinds of ovarian tissue were identified by using limma package in R language (|log2 fold change| gt;1 and false discovery rate [FDR] lt;0.05). Protein-protein interactions (PPIs) and known OC-related genes were screened from COXPRESdb and GenBank database, respectively. Furthermore, PPI network of top 10 upregulated DEGs and top 10 downregulated DEGs was constructed and visualized through Cytoscape software. Finally, for the genes involved in PPI network, functional enrichment analysis was performed by using DAVID (FDR lt;0.05). RESULTS: In total, 1136 DEGs were identified, including 544 downregulated and 592 upregulated DEGs. Then, PPI network was constructed, and DEGs CDKN2A, MUC1, OGN, ZIC1, SOX17, and TFAP2A interacted with known OC-related genes CDK4, EGFR/JUN, SRC, CLI1, CTNNB1, and TP53, respectively. Moreover, functions about oxygen transport and embryonic development were enriched by the genes involved in the network of downregulated DEGs. CONCLUSIONS: We propose that 4 DEGs (OGN, ZIC1, SOX17, and TFAP2A) and 2 functions (oxygen transport and embryonic development) might play a role in the development of OC. These 4 DEGs and known OC-related genes might serve as therapeutic targets for OC. Further studies are required to validate these predictions.
    [Abstract] [Full Text] [Related] [New Search]