These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fabrication mechanism and structural characteristics of the ternary aggregates by lactoferrin, pectin, and (-)-epigallocatechin gallate using multispectroscopic methods. Author: Yang W, Xu C, Liu F, Sun C, Yuan F, Gao Y. Journal: J Agric Food Chem; 2015 May 27; 63(20):5046-54. PubMed ID: 25955032. Abstract: The ternary aggregates were fabricated by lactoferrin (LF), pectin (high methylated pectin (HMP)/low methylated pectin (LMP)), and (-)-epigallocatechin gallate (EGCG) through three different fabrication methods at pH 5.0. The turbidity, particle size, and ζ-potential of ternary aggregates were influenced by the types of pectin, the concentration of EGCG, and fabrication methods. The fluorescence intensity of LF decreased with an increase in EGCG concentration for all ternary aggregates. Far-UV circular dichroism results indicated that EGCG could alter the secondary structure of LF with an increase in the proportion of β-sheet structure at the cost of unordered coil structure. According to near-UV circular dichroism results, EGCG could also modulate the tertiary structure of LF at the presence of pectin. In addition, EGCG could increase the viscoelasticity of the ternary aggregates with HMP, leading to better stability of the ternary aggregates. An opposite result was observed for the ternary aggregates with LMP. These findings should provide an insight into the fabrication mechanism and applications of ternary aggregates formed by protein, polysaccharide, and polyphenol in the food, pharmaceutical, and cosmetic industries.[Abstract] [Full Text] [Related] [New Search]