These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimization of the Dutch matrix test by random selection of sentences from a preselected subset. Author: Houben R, Dreschler WA. Journal: Trends Hear; 2015 May 11; 19():. PubMed ID: 25964195. Abstract: Matrix tests are available for speech recognition testing in many languages. For an accurate measurement, a steep psychometric function of the speech materials is required. For existing tests, it would be beneficial if it were possible to further optimize the available materials by increasing the function's steepness. The objective is to show if the steepness of the psychometric function of an existing matrix test can be increased by selecting a homogeneous subset of recordings with the steepest sentence-based psychometric functions. We took data from a previous multicenter evaluation of the Dutch matrix test (45 normal-hearing listeners). Based on half of the data set, first the sentences (140 out of 311) with a similar speech reception threshold and with the steepest psychometric function (≥9.7%/dB) were selected. Subsequently, the steepness of the psychometric function for this selection was calculated from the remaining (unused) second half of the data set. The calculation showed that the slope increased from 10.2%/dB to 13.7%/dB. The resulting subset did not allow the construction of enough balanced test lists. Therefore, the measurement procedure was changed to randomly select the sentences during testing. Random selection may interfere with a representative occurrence of phonemes. However, in our material, the median phonemic occurrence remained close to that of the original test. This finding indicates that phonemic occurrence is not a critical factor. The work highlights the possibility that existing speech tests might be improved by selecting sentences with a steep psychometric function.[Abstract] [Full Text] [Related] [New Search]