These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CBP-dependent Wnt/β-catenin signaling is crucial in regulation of MDR1 transcription.
    Author: Xia Z, Guo M, Liu H, Jiang L, Li Q, Peng J, Li JD, Shan B, Feng P, Ma H.
    Journal: Curr Cancer Drug Targets; 2015; 15(6):519-32. PubMed ID: 25968898.
    Abstract:
    Aberrant expression of the MDR1-encoded P-glycoprotein (P-gp) is often associated with clinical multi-drug resistance (MDR) leading to poor prognosis and failure of chemotherapy. However, the precise and cooperative molecular mechanism responsible for MDR1 transcription and expression in acquired MDR remains elusive. We, herein, demonstrate that Wnt/β-catenin signal pathway is constitutively activated in Doxorubicin-induced MDR cancer cells, in which nuclear β -catenin specifically interacts with the transcriptional coactivator CBP in a MEK(1/2)/ERK(1/2) signal-dependent manner. Specific knockdown of both β-catenin and CBP by RNAi-mediated depletion abrogates MDR1 transcription and expression resulting in a complete reversal of P-gp-dependent efflux function and restoration of sensitivity to the Doxorubincin-induced cytotoxicity. Moreover, following pharmacological disruption of CBP and β - catenin interaction through inhibition of the MEK(1/2)/ERK(1/2) signal by the specific inhibitor PD98059, MDR1 transcription and its encoded P-gp-dependent function are abolished. These findings conclude that the CBP/β-catenin complex is a core component of the MDR1 transcriptional "enhancesome".
    [Abstract] [Full Text] [Related] [New Search]