These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Docosahexaenoic Acid Downregulates EGF-Induced Urokinase Plasminogen Activator and Matrix Metalloproteinase 9 Expression by Inactivating EGFR/ErbB2 Signaling in SK-BR3 Breast Cancer Cells.
    Author: Li CC, Yao HT, Cheng FJ, Hsieh YH, Lu CY, Wu CC, Liu KL, Chang JW.
    Journal: Nutr Cancer; 2015; 67(5):771-82. PubMed ID: 25970488.
    Abstract:
    Urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) play crucial roles in tumor metastasis. Despite the well-known anticancer role of docosa-hexaenoic acid (DHA), its specific effect on ErbB2-mediated breast cancer metastasis is not fully clarified. In this study, we investigated the effect of DHA on epidermal growth factor (EGF)-induced uPA and MMP-9 activity, expression and cell invasion in SK-BR3 breast cancer cells and the possible mechanisms involved. The results showed that EGF (40 ng/ml) induced uPA and MMP-9 mRNA and protein expression, enzyme activity, and 100 μM DHA significantly inhibited EGF-induced uPA and MMP-9 mRNA, protein expression, enzyme activity, cell migration, and cell invasion. EGF increased protein expression and phosphorylation of EGF receptor (EGFR) and ErbB2 as well as of JNK2, ERK1/2, and Akt, and these changes were attenuated by DHA pretreatment. AG1478, an inhibitor of EGFR, also attenuated EGF-induced activation of EGFR, JNK2, ERK1/2, and Akt. Knocked down ErbB2 expression resulted in a similar inhibition of uPA and MMP-9 expression as noted by DHA and AG1478. Taken together, these results suggest that suppression of EGF-induced metastasis by DHA is likely through an inhibition of EGFR and ErbB2 protein expression and the downstream target uPA and MMP-9 activation in SK-BR3 human breast cancer cells.
    [Abstract] [Full Text] [Related] [New Search]