These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification of lysophosphatidylcholine transacylase from bovine heart muscle microsomes and regulation of activity by lipids and coenzyme A.
    Author: Sanjanwala M, Sun GY, MacQuarrie RA.
    Journal: Biochim Biophys Acta; 1989 Nov 28; 1006(2):203-8. PubMed ID: 2597668.
    Abstract:
    Heart muscle microsomes catalyze the transacylation of lysophosphatidylcholine (lyso PC) to produce phosphatidylcholine (PC). The enzyme which catalyzes this reaction, lyso PC:lyso PC transacylase, has been isolated and characterized from bovine heart muscle microsomes. The purification of the enzyme was achieved by a procedure involving extraction with 3-[3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS) detergent and chromatography on DEAE-cellulose, Reactive blue agarose, and Matrex gel green A. The purified enzyme was nearly homogeneous and consisted of a single molecular species of 128 kDa as determined by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate. The catalytic activity of the enzyme was dependent on the presence of either CoA or acyl-CoA, both of which maximally stimulated at concentrations of approx. 10 microM. Analysis of the PC produced in the reaction showed that the enzyme catalyzed a transacylation in which both acyl groups arose from lyso PC. Furthermore, the enzyme did not possess acyl-CoA:lyso PC acyltransferase activity, lysophospholipase or acyl-CoA hydrolase activity, nor did it catalyze transacylation from lyso PC to lysophosphatidylethanolamine, lysophosphatidylinositol or lysophosphatidylserine. Although transacylation was highly specific for lyso PC as the substrate, various unsaturated fatty acyl-CoA derivatives served as activators. Palmitoyl-CoA and stearoyl-CoA did not significantly activate, although acetyl-CoA was an effective activator. Further modulation of activity was produced by palmitic acid and PC, both of which further activated the enzyme in the presence of oleoyl-CoA, whereas arachidonic acid, oleic acid, phosphatidylethanolamine and phosphatidylserine had no effect on activity. The high activity of this transacylase and its regulation by lipids suggests an important role for disaturated PC species in membranes and a mechanism for controlling the metabolism of lyso PC.
    [Abstract] [Full Text] [Related] [New Search]