These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biocatalytic Approach for the Synthesis of Enantiopure Acebutolol as a β₁-Selective Blocker. Author: Banoth L, Thakur NS, Bhaumik J, Banerjee UC. Journal: Chirality; 2015 Jun; 27(6):382-91. PubMed ID: 25977108. Abstract: A new chemoenzymatic route is reported to synthesize acebutolol, a selective β1 adrenergic receptor blocking agent in enantiopure (R and S) forms. The enzymatic kinetic resolution strategy was used to synthesize enantiopure intermediates (R)- and (S)-N-(3-acetyl-4-(3-chloro-2-hydroxypropoxy)phenyl)butyramide from the corresponding racemic alcohols. The results showed that out of eleven commercially available lipase preparations, two enzyme preparations (Lipase A, Candida antarctica, CLEA [CAL CLEA] and Candida rugosa lipase, 62316 [CRL 62316]) act in enantioselective manner. Under optimized conditions the enantiomeric excess of both (R)- and (S)-N-(3-acetyl-4-(3-chloro-2-hydroxypropoxy)phenyl)butyramide were 99.9 and 96.8%, respectively. N-alkylation of both the (R) and (S) intermediates with isopropylamine gave enantiomerically pure (R and S)- acebutolol with a yield 68 and 72%, respectively. This study suggests a high yielding, easy and environmentally green approach to synthesize enantiopure acebutolol.[Abstract] [Full Text] [Related] [New Search]