These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neohesperidin Dihydrochalcone versus CCl₄-Induced Hepatic Injury through Different Mechanisms: The Implication of Free Radical Scavenging and Nrf2 Activation.
    Author: Su C, Xia X, Shi Q, Song X, Fu J, Xiao C, Chen H, Lu B, Sun Z, Wu S, Yang S, Li X, Ye X, Song E, Song Y.
    Journal: J Agric Food Chem; 2015 Jun 10; 63(22):5468-75. PubMed ID: 25978654.
    Abstract:
    Neohesperidin dihydrochalcone (NHDC), a sweetener derived from citrus, belongs to the family of bycyclic flavonoids dihydrochalcones. NHDC has been reported to act against CCl4-induced hepatic injury, but its mechanism is still unclear. We first discovered that NHDC showed a strong ability to scavenge free radicals. In addition, NHDC induces the phase II antioxidant enzymes heme oxygenase 1 (HO-1) and NAD(P)H/quinone oxidoreductase 1 (NQO1) through the activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) signaling. Further assays demonstrated that NHDC induces accumulation of Nrf2 in the nucleus and augmented Nrf2-ARE binding activity. Moreover, NHDC inhibits the ubiquitination of Nrf2 and suggests the modification of Kelch-like ECH-associated protein 1 (Keap1) and the disruption of the Keap1/Nrf2 complex. c-Jun N-terminal kinase (JNK) and p38 but not extracellular signal-regulated protein kinase (ERK) phosphorylations were up-regulated by NHDC treatment. Taken together, NHDC showed its protective antioxidant effect against CCl4-induced oxidative damage via the direct free radical scavenging and indirect Nrf2/ARE signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]