These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Field approach to mining-dump revegetation by application of sewage sludge co-compost and a commercial biofertilizer.
    Author: Sevilla-Perea A, Mingorance MD.
    Journal: J Environ Manage; 2015 Aug 01; 158():95-102. PubMed ID: 25979296.
    Abstract:
    An approach was devised for revegetation of a mining dump soil, sited in a semiarid region, with basic pH as well as Fe and Mn enrichment. A field experiment was conducted involving the use of co-compost (a mixture of urban sewage sludge and plant remains) along with a commercial biofertilizer (a gel suspension which contains arbuscular mycorrhizal fungus) to reinforce the benefits of the former. Four treatments were studied: unamended soil; application of conditioners separately and in combination. Pistachio, caper, rosemary, thyme and juniper were planted. We evaluated the effects of the treatments using soil quality (physicochemical properties, total content of hazardous elements, nutrient availability, microbial biomass and enzyme activities) and plant establishment indicators (survival, growth, vigor, nutrient content in leaves, nutrient balances and mycorrhizal root colonization). Thyme and juniper did not show a suitable survival rate (<50%) whereas 70-100% of the pistachio, rosemary and caper survived for at least 27 months. In unamended soil, plant growth was severely hampered by P, N, K and Zn deficiencies as well as Fe and Mn excess. Overall, the treatments affected the soil and plant indicators as follows: biofertilizer + co-compost > co-compost > biofertilizer > unamended. The application of co-compost was therefore essential with regard to improving soil fertility; furthermore, it increased leaf N and P content, whereas leaf Fe and Mn concentrations showed a decrease. The combined treatment, however, provided the best results. The positive interaction between the two soil conditioners might be related to the capacity of the biofertilizer to increase nutrient uptake from the composted residue, and to protect plants against Fe and Mn toxicity.
    [Abstract] [Full Text] [Related] [New Search]