These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CGGBP1 mitigates cytosine methylation at repetitive DNA sequences. Author: Agarwal P, Collier P, Fritz MH, Benes V, Wiklund HJ, Westermark B, Singh U. Journal: BMC Genomics; 2015 May 16; 16(1):390. PubMed ID: 25981527. Abstract: BACKGROUND: CGGBP1 is a repetitive DNA-binding transcription regulator with target sites at CpG-rich sequences such as CGG repeats and Alu-SINEs and L1-LINEs. The role of CGGBP1 as a possible mediator of CpG methylation however remains unknown. At CpG-rich sequences cytosine methylation is a major mechanism of transcriptional repression. Concordantly, gene-rich regions typically carry lower levels of CpG methylation than the repetitive elements. It is well known that at interspersed repeats Alu-SINEs and L1-LINEs high levels of CpG methylation constitute a transcriptional silencing and retrotransposon inactivating mechanism. RESULTS: Here, we have studied genome-wide CpG methylation with or without CGGBP1-depletion. By high throughput sequencing of bisulfite-treated genomic DNA we have identified CGGBP1 to be a negative regulator of CpG methylation at repetitive DNA sequences. In addition, we have studied CpG methylation alterations on Alu and L1 retrotransposons in CGGBP1-depleted cells using a novel bisulfite-treatment and high throughput sequencing approach. CONCLUSIONS: The results clearly show that CGGBP1 is a possible bidirectional regulator of CpG methylation at Alus, and acts as a repressor of methylation at L1 retrotransposons.[Abstract] [Full Text] [Related] [New Search]