These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Computational and in vitro Investigation of miRNA-Gene Regulations in Retinoblastoma Pathogenesis: miRNA Mimics Strategy. Author: Venkatesan N, Deepa PR, Khetan V, Krishnakumar S. Journal: Bioinform Biol Insights; 2015; 9():89-101. PubMed ID: 25983556. Abstract: PURPOSE: Retinoblastoma (RB), a primary pediatric intraocular tumor, arises from primitive retinal layers. Several novel molecular strategies are being developed for the clinical management of RB. miRNAs are known to regulate cancer-relevant biological processes. Here, the role of selected miRNAs, namely, miR-532-5p and miR-486-3p, has been analyzed for potential therapeutic targeting in RB. METHODS: A comprehensive bioinformatic analysis was performed to predict the posttranscriptional regulators (miRNAs) of the select panel of genes [Group 1: oncogenes (HMGA2, MYCN, SYK, FASN); Group 2: cancer stem cell markers (TACSTD, ABCG2, CD133, CD44, CD24) and Group 3: cell cycle regulatory proteins (p53, MDM2)] using Microcosm, DIANALAB, miRBase v 18, and REFSEQ database, and RNA hybrid. The expressions of five miRNAs, namely, miR-146b-5p, miR-532-5p, miR-142-5p, miR-328, and miR-486-3p, were analyzed by qRT-PCR on primary RB tumor samples (n = 30; including 17 invasive RB tumors and 13 noninvasive RB tumors). Detailed complementary alignment between 5' seed sequence of differentially expressed miRNAs and the sequence of target genes was determined. Based on minimum energy level and piCTAR scores, the gene targets were selected. Functional roles of these miRNA clusters were studied by using mimics in cultured RB (Y79, Weri Rb-1) cells in vitro. The gene targets (SYK and FASN) of the studied miRNAs were confirmed by qRT-PCR and western blot analysis. Cell proliferation and apoptotic studies were performed. RESULTS: Nearly 1948 miRNAs were identified in the in silico analysis, From this list, only 9 upregulated miRNAs (miR-146b-5p, miR-305, miR-663b, miR-299, miR-532-5p, miR-892b, miR-501, miR-142-5p, and miR-513b) and 10 downregulated miRNAs (miR-1254, miR-328, miR-133a, miR-1287, miR-1299, miR-375, miR-486-3p, miR-720, miR-98, and miR-122*) were found to be common with the RB serum miRNA profile. Downregulation of five miRNAs (miR-146b-5p, miR-532-5p, miR-142-5p, miR-328, and miR-486-3p) was confirmed experimentally. Predicted common oncogene targets (SYK and FASN) of miR-486-3p and miR-532-5p were evaluated for their mRNA and protein expression in these miRNA mimic-treated RB cells. Experimental overexpression of these miRNAs mediated apoptotic cell death without significantly altering the cell cycle in RB cells. CONCLUSION: Key miRNAs in RB pathogenesis were identified by an in silico approach. Downregulation of miR-486-3p and miR-532-5p in primary retinoblastoma tissues implicates their role in tumorigenesis. Prognostic and therapeutic potential of these miRNA was established by the miRNA mimic strategy.[Abstract] [Full Text] [Related] [New Search]