These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamics of changes in the cardiovascular response to submaximal exercise during low-intensity endurance training with particular reference to the systolic time intervals.
    Author: Krzemiński K, Niewiadomski W, Nazar K.
    Journal: Eur J Appl Physiol Occup Physiol; 1989; 59(5):377-84. PubMed ID: 2598919.
    Abstract:
    Eighteen male volunteers (aged 20-23 years), not involved in any sporting activities, were submitted to 13 weeks of training consisting of 30 min exercise [at 50%-75% maximal oxygen intake (VO2max)] on a cycle ergometer, performed 3 times a week. Every 4 weeks cardiac function was evaluated by measuring the systolic time intervals at rest and during submaximal cycle exercise. Stroke volume (SV), heart rate (HR) and blood pressure (BP) responses to submaximal exercise, VO2max and anaerobic threshold (AT) were also determined. Significant increases in VO2max, increases in AT and SV at the submaximal exercise intensities, as well as decreases in HR and BP were found after 4 weeks of training. Resting systolic time intervals were not affected by training, but during the submaximal cycle exercise the values of the pre-ejection period (PEP) and isovolumic contraction time (ICT) corresponding to HR of 100 beats.min-1 were significantly lowered after 13 weeks of training, whereas PEP, ICT and total electromechanical systole corresponding to HR of 130 beats.min-1 were significantly shortened by the 4th week. The ratios of PEP:LVET (left ventricular ejection time) and ICT:LVET during submaximal exercise were significantly lowered by training starting from the 8th week. These changes might be interpreted as evidence of the training-induced enhancement of the "contractility reserve", i.e. the ability to increase heart muscle contractility with increasing exercise intensity.
    [Abstract] [Full Text] [Related] [New Search]