These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Author: Elloumi N, Zouari M, Chaari L, Abdallah FB, Woodward S, Kallel M. Journal: Environ Sci Pollut Res Int; 2015 Oct; 22(19):14829-40. PubMed ID: 25994270. Abstract: Phosphogypsum (PG) is the solid waste product of phosphate fertilizer production and is characterized by high concentrations of salts, heavy metals, and certain natural radionuclides. The work reported in this paper examined the influence of PG amendment on soil physicochemical proprieties, along with its potential impact on several physiological traits of sunflower seedlings grown under controlled conditions. Sunflower seedlings were grown on agricultural soil substrates amended with PG at rates of 0, 2.5, and 5 %. The pH of the soil decreased but electrical conductivity and organic matter, calcium, phosphorus, sodium, and heavy metal contents increased in proportion to PG concentration. In contrast, no variations were observed in magnesium content and small increases were recorded in potassium content. The effects of PG on sunflower growth, leaf chlorophyll content, nutritional status, osmotic regulator content, heavy metal accumulation, and antioxidative enzymes were investigated. Concentrations of trace elements in sunflower seedlings grown in PG-amended soil were considerably lower than ranges considered phytotoxic for vascular plants. The 5 % PG dose inhibited shoot extension and accumulation of biomass and caused a decline in total protein content. However, chlorophyll, lipid peroxidation, proline and sugar contents, and activities of antioxidant enzymes such as superoxide dismutase and catalase increased. Collectively, these results strongly support the hypothesis that enzymatic antioxidation capacity is an important mechanism in tolerance of PG salinity in sunflower seedlings.[Abstract] [Full Text] [Related] [New Search]