These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bioactive self-assembling lipid-like peptides as permeation enhancers for oral drug delivery.
    Author: Karavasili C, Spanakis M, Papagiannopoulou D, Vizirianakis IS, Fatouros DG, Koutsopoulos S.
    Journal: J Pharm Sci; 2015 Jul; 104(7):2304-11. PubMed ID: 25994901.
    Abstract:
    Amphiphilic, lipid-like, self-assembling peptides are functional biomaterials with surfactant properties. In this work, lipid-like peptides were designed to have a hydrophilic head composed of aspartic acid or lysine and a six alanine residue hydrophobic domain and have a length similar to that of biological lipids. The aim of this work was to examine the potential of using ac-A6 K-CONH2 , KA6 -CONH2 , ac-A6 D-COOH, and DA6 -COOH lipid-like peptides as permeability enhancers to facilitate transport through the intestinal barrier. In vitro transport studies of the macromolecular fluorescent marker fluorescein isothiocyanate (FITC)-dextran (4.4 kDa) through Caco-2 cell monolayers show the permeation enhancement ability of the lipid-like peptides. We observed increased FITC-dextran transport across the epithelial monolayer up to 7.6-fold in the presence of lipid-like peptides. Furthermore, we monitored the transepithelial resistance and performed immunofluorescence studies of the cell tight junctions. Ex vivo studies showed increased mucosal to serosal absorption of FITC-dextran in rat jejunum in the presence of the ac-A6 D-COOH peptide. Furthermore, a small increase in the serosal transport of bovine serum albumin was observed upon addition of ac-A6 D-COOH. Lipid-like peptides are biocompatible and they do not affect epithelial cell viability and epithelial monolayer integrity. Our results suggest that short, lipid-like peptides may be used as permeation enhancers to facilitate oral delivery of diagnostic and therapeutic molecules.
    [Abstract] [Full Text] [Related] [New Search]