These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Amphiphilic cationic Zn-porphyrins with high photodynamic antimicrobial activity. Author: Thomas M, Craik JD, Tovmasyan A, Batinic-Haberle I, Benov LT. Journal: Future Microbiol; 2015; 10(5):709-24. PubMed ID: 26000647. Abstract: AIM: Photodynamic inactivation of microbes can efficiently eradicate antibiotic-resistant strains. Systematic structural modification was used to investigate how porphyrin-based photosensitizers (PSs) could be designed for improved antibacterial activity. MATERIALS & METHODS: Zinc(II)5,10,15,20-tetrakis(N-alkylpyridinium-2(3,4)-yl)porphyrins presenting systematic modifications at the periphery of the porphyrin ring were evaluated for toxicity and antimicrobial photodynamic activity by measuring metabolic activity, cell membrane integrity and viability using antibiotic-sensitive and resistant Escherichia coli strains as model Gram-negative targets. RESULTS: Maximal sensitizer uptake, and, upon illumination, decrease of viable bacteria by >6 log10 were achieved by positively charged amphiphilic PSs with longer (six to eight carbon) alkyl substituents. CONCLUSION: Antibacterial photoefficiency (throughout the text photoefficiency has been used as equivalent of photocytotoxic efficacy) can be increased by orders of magnitude by increasing the lipophilicity of cationic alkylmetalloporphyrin PSs.[Abstract] [Full Text] [Related] [New Search]