These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Potentiation of hypericin-mediated photodynamic therapy cytotoxicity by MK-886: focus on ABC transporters, GDF-15 and redox status.
    Author: Kuchárová B, Mikeš J, Jendželovský R, Vargová J, Mikešová L, Jendželovská Z, Kovaľ J, Fedoročko P.
    Journal: Photodiagnosis Photodyn Ther; 2015 Sep; 12(3):490-503. PubMed ID: 26003114.
    Abstract:
    BACKGROUND: Pretreatment with 5-LOX pathway inhibitor MK-886 potentiates cytotoxic effects of photodynamic therapy mediated by natural photosensitizer, hypericin. In this study, we focused on elucidating mechanisms beyond the increased efficacy of combined treatment. METHODS: Metabolic activity/viability, caspase-3 activation/mitochondrial membrane potential dissipation, intracellular hypericin level, glutathione level and redox status (NAD(P)H/oxidized flavins ratio) analyses, as well as drug efflux assays, were performed by flow cytometry. Changes in protein expression of ATP-binding cassette transporters, GDF-15 and other selected proteins were evaluated by Western blotting. Silencing of gdf-15 was carried out to verify its role in response to treatment. RESULTS: MK-886 pretreatment led to a concentration-dependent increase in intracellular hypericin content, accompanied by changes in ATP-binding cassette transporters levels and efflux efficiency. Intracellular accumulation of cytokine GDF-15 correlated with increased cell death markers; however, the impact of gdf-15 silencing on the evaluated markers was negligible. A marked decrease in the glutathione level of a majority of cells was observed after more toxic combination treatment. CONCLUSION: The significant increase in cell death markers after combination treatment confirms the potentiating effect of MK-886 on hypericin-mediated photodynamic therapy in HT-29 and MCF-7 cells. Although BCRP downregulation was not confirmed as leading mechanism responsible for elevated levels of hypericin content, changes in expression and efflux activity of ABC transporters caused by MK-886 suggest its potential in combination treatment with drugs that are substrates of these transporters, predominantly MRP1. However, complex cellular response to MK-886 pretreatment needs to be considered and further elucidated.
    [Abstract] [Full Text] [Related] [New Search]