These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Assessment of Sediment Risk in the North End of Tai Lake, China: Integrating Chemical Analysis and Chronic Toxicity Testing with Chironomus dilutus.
    Author: Qi H, Ma P, Li H, You J.
    Journal: Arch Environ Contam Toxicol; 2015 Nov; 69(4):461-9. PubMed ID: 26003187.
    Abstract:
    Whole life-cycle bioassays with Chironomus dilutus were performed to evaluate sediment toxicity in Tai Lake, a typical freshwater lake in China. Meanwhile, contaminants of concern were analyzed in sediment. The sediments in Tai Lake showed no acute mortality in 10-day testing to C. dilutus. After chronic exposure to the sediments, however, adverse effects-including decreased survival and sublethal impairments of growth, emergence, and fecundity-were observed at most sites in Tai Lake. A variety of contaminants were detected in sediment with the total concentrations in the range of 504-889 ng/g dry weight (dw) for polycyclic aromatic hydrocarbons, 0.56-1.81 ng/g dw for polychlorinated biphenyls, 38.6-87.8 ng/g dw for polybrominated diphenyl ethers, 8.34-14.2 ng/g dw for organochlorine pesticides, 1.27-2.95 ng/g dw for organophosphate pesticides, 0.11-0.21 ng/g dw for pyrethroid pesticides, and 332-609 µg/g dw for metals. Finally, a canonical correlation analysis was applied to link chronic sediment toxicity to the toxic units of individual contaminants. Results suggested that two pesticides (hexachlorocyclohexane and chlorpyrifos) and two metals (chromium and nickel) in sediments from Tai Lake were the potential contributors to the noted toxicity in C. dilutus in the life-cycle toxicity testing. In conclusion, acute bioassays with the benthos were not sensitive enough to assess sediment toxicity in freshwater lakes in China, and it is desirable to integrate chronic toxicity testing with chemical analysis to better understand sediment risk.
    [Abstract] [Full Text] [Related] [New Search]