These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CeO2 nanorod/g-C3N4/N-rGO composite: enhanced visible-light-driven photocatalytic performance and the role of N-rGO as electronic transfer media.
    Author: Wang L, Ding J, Chai Y, Liu Q, Ren J, Liu X, Dai WL.
    Journal: Dalton Trans; 2015 Jun 28; 44(24):11223-34. PubMed ID: 26008988.
    Abstract:
    A novel CeO2 nanorod/g-C3N4/N-rGO ternary composite was synthesized using a simple ultrasonic-heat treatment method for application in the photocatalytic degradation of organic pollutants under the irradiation of visible light. This material shows superior photocatalytic activity compared with pure g-C3N4 and CeO2 nanorods, and the photodegradation rate of RhB is up to 2.1-fold higher than that of the g-C3N4/N-rGO (at the optimum content of 0.25 wt% N-rGO) catalyst when the content of CeO2 nanorods was 2 wt%. The enhancement of photocatalytic activity could be attributed to the synergistic effect among CeO2, g-C3N4 and N-rGO (serves as a conductive network), which was found to lead to more efficient separation of photogenerated electron-hole pairs, resulting in the effective photodegradation of organic pollutants. In addition, superoxide radical anions (˙O2(-)) and holes (h(+)) were considered as the main reactive species during the photodegradation process, and the ternary composite also exhibited preferable stability for the decomposition of RhB. This work provides an in-depth perspective for understanding the N-doped graphene-involved photocatalytic mechanism.
    [Abstract] [Full Text] [Related] [New Search]