These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alternative preparation of propolis extracts: comparison of their composition and biological activities.
    Author: Kubiliene L, Laugaliene V, Pavilonis A, Maruska A, Majiene D, Barcauskaite K, Kubilius R, Kasparaviciene G, Savickas A.
    Journal: BMC Complement Altern Med; 2015 May 27; 15():156. PubMed ID: 26012348.
    Abstract:
    BACKGROUND: Propolis is the bee product noted for multiple biological effects, and therefore it is widely used for the prevention and treatment of a variety of diseases. The active substances of propolis are easily soluble in ethanol. However ethanolic extracts cannot be used in treatment of certain diseases encountered in ophthalmology, pediatrics, etc. Unfortunately, the main biologically active substances of propolis are scarcely soluble in water, oil and other solvents usually used in pharmaceutical industry. The aim of this study was to investigate chemical composition, radical scavenging and antimicrobial activity of propolis extracts differently made in nonethanolic solvents. METHODS: Total content of phenolic compounds in extracts was determined using Folin-Ciocalteu method. Chemical composition and radical scavenging activity of extracts were determined using HPLC system with free radical reaction detector. Antimicrobial activity of examined preparations was evaluated using the agar-well diffusion assay. RESULTS: Total amount of phenolic compounds in extracts made in polyethylene glycol 400 (PEG) and water mixture or in PEG, olive oil and water mixture at 70 °C was comparable to that of ethanolic extract. Predominantly identified compounds were phenolic acids, which contribute ca. 40 % of total radical scavenging activity. Investigated nonethanolic extracts inhibited the growth and reproduction of all tested microrganisms. Antimicrobial activity of some extracts was equal or exceeded the antimicrobial effect of ethanolic extract. Extracts made in pure water or oil only at room temperature, contained more than 5 - 10-fold lower amount of phenolic compounds, and demonstrated no antimicrobial activity. CONCLUSIONS: Nonethanolic solvent complex and the effect of higher temperature allows more effective extraction of active compounds from propolis. Concentration of total phenolic compounds in these extracts does not differ significantly from the concentration found in ethanolic extract. Propolis nonethanolic extracts have radical scavenging and antimicrobial activity.
    [Abstract] [Full Text] [Related] [New Search]