These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Four-component Staphylococcus aureus vaccine 4C-staph enhances Fcγ receptor expression in neutrophils and monocytes and mitigates S. aureus infection in neutropenic mice.
    Author: Torre A, Bacconi M, Sammicheli C, Galletti B, Laera D, Fontana MR, Grandi G, De Gregorio E, Bagnoli F, Nuti S, Bertholet S, Bensi G.
    Journal: Infect Immun; 2015 Aug; 83(8):3157-63. PubMed ID: 26015481.
    Abstract:
    Staphylococcus aureus is a human bacterial pathogen causing a variety of diseases. The occurrence of multidrug-resistant strains of Staphylococcus aureus underlines the need for a vaccine. Defining immune correlates of protection may support the design of an effective vaccine. We used a murine Staphylococcus aureus infection model, in which bacteria were inoculated in an air pouch generated on the back of the animal. Analysis of the air-pouch content in mice immunized or not with an adjuvanted multiantigen vaccine formulation, four-component S. aureus vaccine (4C-Staph), prior to infection allowed us to measure bacteria, cytokines, and 4C-Staph-specific antibodies and to analyze host immune cells recruited to the infection site. Immunization with 4C-Staph resulted in accumulation of antigen-specific antibodies in the pouch and mitigated the infection. Neutrophils were the most abundant cells in the pouch, and they showed the upregulation of Fcγ receptor (FcγR) following immunization with 4C-Staph. Reduction of the infection was also obtained in mice immunized with 4C-Staph and depleted of neutrophils; these mice showed an increase in monocytes and macrophages. Upregulation of the FcγR and the presence of antigen-specific antibodies induced by immunization with 4C-Staph may contribute to increase bacterial opsonophagocytosis. Protection in neutropenic mice indicated that an effective vaccine could activate alternative protection mechanisms compensating for neutropenia, a condition often occurring in S. aureus-infected patients.
    [Abstract] [Full Text] [Related] [New Search]