These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cucumis sativus L. WAX2 Plays a Pivotal Role in Wax Biosynthesis, Influencing Pollen Fertility and Plant Biotic and Abiotic Stress Responses.
    Author: Wang W, Liu X, Gai X, Ren J, Liu X, Cai Y, Wang Q, Ren H.
    Journal: Plant Cell Physiol; 2015 Jul; 56(7):1339-54. PubMed ID: 26023108.
    Abstract:
    Cuticular waxes play an important part in protecting plant aerial organs from biotic and abiotic stresses. In previous studies, the biosynthetic pathway of cuticular waxes and relative functional genes has been researched and understood; however, little is known in cucumber (Cucumis sativus L.). In this study, we cloned and characterized an AtWAX2 homolog, CsWAX2, in cucumber and found that it is highly expressed in the epidermis, where waxes are synthesized, while subcellular localization showed that CsWAX2 protein is localized to the endoplasmic reticulum (ER). The transcriptional expression of CsWAX2 was found to be induced by low temperature, drought, salt stress and ABA, while the ectopic expression of CsWAX2 in an Arabidopsis wax2 mutant could partially complement the glossy stem phenotype. Abnormal expression of CsWAX2 in transgenic cucumbers specifically affected both very long chain (VLC) alkanes and cutin biosynthesis. Furthermore, transgenic cucumber plants of CsWAX2 showed significant changes in pollen viability and fruit resistance to water loss and pathogens compared with the wild type. Collectively, these results indicated that CsWAX2 plays a pivotal role in wax biosynthesis, influencing pollen fertility and the plant's response to biotic and abiotic stresses.
    [Abstract] [Full Text] [Related] [New Search]