These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Local and systemic XAGE-1b-specific immunity in patients with lung adenocarcinoma. Author: Talebian Yazdi M, Loof NM, Franken KL, Taube C, Oostendorp J, Hiemstra PS, Welters MJ, van der Burg SH. Journal: Cancer Immunol Immunother; 2015 Sep; 64(9):1109-21. PubMed ID: 26025564. Abstract: XAGE-1b is a cancer/testis antigen aberrantly expressed in pulmonary adenocarcinoma. Systemic antibody and T cell responses have been demonstrated in adenocarcinoma patients, but so far, local antigen-specific immunity has not been reported. In this study, XAGE-1b expression by tumor cells as well as the presence of systemic and/or local XAGE-1b-specific immunity was assessed in peripheral blood, tumor tissue and tumor-draining lymph nodes of Caucasian patients with pulmonary adenocarcinoma. XAGE-1b protein expression was detected in 43.6% (17 of 39) of patients when at least two different parts of a resected tumor were assessed. In 20 patients, analysis of T cells isolated and expanded from the primary tumor and its draining lymph node demonstrated XAGE-1b-specific responses in two patients. XAGE-1b-specific immunoglobulin G antibodies were found in 3 of 40 patients. These three antibody-positive patients had also mounted a systemic T cell response to XAGE-1b, measured by proliferation, cytokine production and expression of T cell activation markers on peripheral blood mononuclear cells. The population of XAGE-1b-specific T cells comprised both CD4+ and CD8+ T cells secreting both type I and II cytokines. Epitope mapping showed that T cells predominantly targeted the N-terminal part of the XAGE-1b protein, while the B cell response was directed against the C-terminal domain. Our study for the first time provides evidence for the presence of XAGE-1b-specific T cells within adenocarcinoma tissue, which supports the concept that XAGE-1b acts as a genuine tumor antigen and, therefore, might form an attractive target for a vaccine-based approach of immunotherapy.[Abstract] [Full Text] [Related] [New Search]