These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhancing performances of SSVEP-based brain-computer interfaces via exploiting inter-subject information. Author: Yuan P, Chen X, Wang Y, Gao X, Gao S. Journal: J Neural Eng; 2015 Aug; 12(4):046006. PubMed ID: 26028259. Abstract: OBJECTIVE: A new training-free framework was proposed for target detection in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) using joint frequency-phase coding. APPROACH: The key idea is to transfer SSVEP templates from the existing subjects to a new subject to enhance the detection of SSVEPs. Under this framework, transfer template-based canonical correlation analysis (tt-CCA) methods were developed for single-channel and multi-channel conditions respectively. In addition, an online transfer template-based CCA (ott-CCA) method was proposed to update EEG templates by online adaptation. MAIN RESULTS: The efficiency of the proposed framework was proved with a simulated BCI experiment. Compared with the standard CCA method, tt-CCA obtained an 18.78% increase of accuracy with a data length of 1.5 s. A simulated test of ott-CCA further received an accuracy increase of 2.99%. SIGNIFICANCE: The proposed simple yet efficient framework significantly facilitates the use of SSVEP BCIs using joint frequency-phase coding. This study also sheds light on the benefits from exploring and exploiting inter-subject information to the electroencephalogram (EEG)-based BCIs.[Abstract] [Full Text] [Related] [New Search]