These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Creation of Superheterojunction Polymers via Direct Polycondensation: Segregated and Bicontinuous Donor-Acceptor π-Columnar Arrays in Covalent Organic Frameworks for Long-Lived Charge Separation. Author: Jin S, Supur M, Addicoat M, Furukawa K, Chen L, Nakamura T, Fukuzumi S, Irle S, Jiang D. Journal: J Am Chem Soc; 2015 Jun 24; 137(24):7817-27. PubMed ID: 26030399. Abstract: By developing metallophthalocyanines and diimides as electron-donating and -accepting building blocks, herein, we report the construction of new electron donor-acceptor covalent organic frameworks (COFs) with periodically ordered electron donor and acceptor π-columnar arrays via direct polycondensation reactions. X-ray diffraction measurements in conjunction with structural simulations resolved that the resulting frameworks consist of metallophthalocyanine and diimide columns, which are ordered in a segregated yet bicontinuous manner to form built-in periodic π-arrays. In the frameworks, each metallophthalocyanine donor and diimide acceptor units are exactly linked and interfaced, leading to the generation of superheterojunctions-a new type of heterojunction machinery, for photoinduced electron transfer and charge separation. We show that this polycondensation method is widely applicable to various metallophthalocyanines and diimides as demonstrated by the combination of copper, nickel, and zinc phthalocyanine donors with pyrommellitic diimide, naphthalene diimide, and perylene diimide acceptors. By using time-resolved transient absorption spectroscopy and electron spin resonance, we demonstrated that the COFs enable long-lived charge separation, whereas the metal species, the class of acceptors, and the local geometry between donor and acceptor units play roles in determining the photochemical dynamics. The results provide insights into photoelectric COFs and demonstrate their enormous potential for charge separation and photoenergy conversions.[Abstract] [Full Text] [Related] [New Search]