These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: BOLD fMRI of cerebrovascular reactivity in the middle cerebral artery territory: A 100 volunteers' study.
    Author: Boudiaf N, Attyé A, Warnking JM, Troprès I, Lamalle L, Pietras J, Krainik A.
    Journal: J Neuroradiol; 2015 Dec; 42(6):338-44. PubMed ID: 26031884.
    Abstract:
    BACKGROUND AND PURPOSE: The assessment of cerebrovascular reactivity (CVR) has shown promising results for its use in medical diagnosis and prognosis, especially in patients suffering from severe intracranial arterial stenosis. However, its quantification remains uncertain because of a large variability inherent in brain anatomy and in methodological settings. To overcome this variability, we provide lateralization index (LI) values for CVR within the middle cerebral artery territory to detect CVR impairment. MATERIALS AND METHODS: We assessed CVR in 100 volunteers (41 females; 47.52 ± 21.58 years) without cervico-encephalic arterial stenosis using BOLD-fMRI contrast with a block-design hypercapnic challenge. Averaged end-tidal CO2 was used as a physiological regressor for statistical analyses with a general linear model. We measured %BOLD signal-change in segmented gray matter regions of interest in the middle cerebral artery territory (MCA). We calculated a laterality index according to the following formula: LI=(CVRleft-CVRright)/(CVRleft+CVRright). We tested the effects of methodological settings (i.e. hypercapnic gas, gas administration means, MR acquisition and sex) on %BOLD signal change and LI values with analysis of variance. RESULTS: No adverse effects of the hypercapnic challenge were reported. LI values were independent of experimental conditions. Mean LI calculated in MCA territories was 0.016 ± 0.031, giving the lower and upper limits of 95% (m ± 2SD) of this population distribution at]-0.05; 0.08[. CONCLUSION: LI can effectively help us to overcome measurement variabilities. Therefore, it can be used to detect abnormal asymmetries in CVR and identify patients at higher risk of ischemic stroke.
    [Abstract] [Full Text] [Related] [New Search]