These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Swa2, the yeast homolog of mammalian auxilin, is specifically required for the propagation of the prion variant [URE3-1].
    Author: Troisi EM, Rockman ME, Nguyen PP, Oliver EE, Hines JK.
    Journal: Mol Microbiol; 2015 Sep; 97(5):926-41. PubMed ID: 26031938.
    Abstract:
    Yeast prions require a core set of chaperone proteins including Sis1, Hsp70 and Hsp104 to generate new amyloid templates for stable propagation, yet emerging studies indicate that propagation of some prions requires additional chaperone activities, demonstrating chaperone specificity beyond the common amyloid requirements. To comprehensively assess such prion-specific requirements for the propagation of the [URE3] prion variant [URE3-1], we screened 12 yeast cytosolic J-proteins, and here we report a novel role for the J-protein Swa2/Aux1. Swa2 is the sole yeast homolog of the mammalian protein auxilin, which, like Swa2, functions in vesicle-mediated endocytosis by disassembling the structural lattice formed by the protein clathrin. We found that, in addition to Sis1, [URE3-1] is specifically dependent upon Swa2, but not on any of the 11 other J-proteins. Further, we show that [URE3-1] propagation requires both a functional J-domain and the tetratricopeptide repeat (TPR) domain, but surprisingly does not require Swa2-clathrin binding. Because the J-domain of Swa2 can be replaced with the J-domains of other proteins, our data strongly suggest that prion-chaperone specificity arises from the Swa2 TPR domain and supports a model where Swa2 acts through Hsp70, most likely to provide additional access points for Hsp104 to promote prion template generation.
    [Abstract] [Full Text] [Related] [New Search]