These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [The influence of iron ions on ATP-hydrolases activity of cell membranes of rat colon smooth muscle and kidney]. Author: Kaplia AA. Journal: Ukr Biochem J; 2015; 87(1):83-90. PubMed ID: 26036134. Abstract: To elucidate the specific features of the ATP-hydrolases structural resistance in the membrane under the action of the prooxidants: Fe2' and hydrogen peroxide, and N-ethylmaleimide (NEM) the colonic smooth muscle (CSM) Na+, K(+)-ATPase activity was compared with activities of the corresponding Mg(2+)-ATP-hydrolase and ATPases from kidney medullar layer of rats. The inhibition study of the CSM Na+, K(+)-ATPase by divalent iron shows the decrease of the activity by 30% at 0.1 μM FeSO4 and in the range of 0.1-10 μM--to 45% of residual activity. When comparing with kidney enzyme (rep- resents exclusively α1-isozyme) the CSM Na+, K(+)-ATPase sensitivity to Fe2+ is reliably higher at its submicromolar concentration. CSM Mg2+-ATPase is much more resistant to iron ions effect, than kidney one. However for two tissues Mg2(+)-ATPase activity is always more resistant as compared with corresponding Na+, K(+)-ATPase activity. Against 1 mM EGTA Na+,K(+)-ATPase and Mg2(+)-ATPase activities of GMOK and kidneys are equally insensitive to effect of hydrogen peroxide in concentration up to 1 mM. But in the presence of 20 μM FeSO4 in the concentration range of 1 nM-1 mM of H2O2 the Na+, K(+)-ATPase is inhibited to greater extent, than Mg2+-ATPase activity. NEM sensitivity of the two ATP-hydrolase systems corresponds to prooxidant sensitivity that indicates the distinct importance of SH-groups for their functioning. It is concluded that Na+, K+-ATPase can serve as a marker of membrane sensitivity to oxidation, Mg(2+)-ATPase is resistant to oxidation and can be considered as criterion of the oxidation resistance when comparing membrane enzyme complexes, es- pecially in GMOK.[Abstract] [Full Text] [Related] [New Search]