These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media. Author: Dong H, Zeng G, Zhang C, Liang J, Ahmad K, Xu P, He X, Lai M. Journal: J Environ Sci (China); 2015 Jun 01; 32():180-8. PubMed ID: 26040744. Abstract: This study investigated the interaction between Cu2+ and nano zero-valent iron (NZVI) coated with three types of stabilizers (i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu2+ uptake, colloidal stability and mobility of surface-modified NZVI (SM-NZVI) in the presence of Cu2+. The uptake of Cu2+ by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu2+, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu2+. The presence of Cu2+ exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu2+ caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu2+ complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu2+ in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu2+ may be contributing to this straining effect.[Abstract] [Full Text] [Related] [New Search]