These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydrodynamic segregation in a bidisperse colloidal suspension in microchannel flow: A theoretical study.
    Author: Kanehl P, Stark H.
    Journal: J Chem Phys; 2015 Jun 07; 142(21):214901. PubMed ID: 26049518.
    Abstract:
    Colloids in suspension exhibit shear-induced migration towards regions of low viscous shear. In dense bidisperse colloidal suspensions under pressure driven flow large particles can segregate in the center of a microchannel and the suspension partially demixes. To develop a theoretical understanding of these effects, we formulate a phenomenological model for the particle currents based on the work of Phillips et al. [Phys. Fluids 4, 30 (1992)]. We also simulate hard spheres under pressure-driven flow in two and three dimensions using the mesoscale simulation technique of multi-particle collision dynamics. Using a single fit parameter for the intrinsic diffusivity, our theory accurately reproduces the simulated density profiles across the channel. We present a detailed parameter study on how a monodisperse suspension enriches the channel center and quantitatively confirm the experimental observation that a binary colloidal mixture partially segregates into its two species. In particular, we always find a strong accumulation of large particles in the center. Qualitative differences between two and three dimensions reveal that collective diffusion is more relevant in two dimensions.
    [Abstract] [Full Text] [Related] [New Search]