These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A controllable bacterial lysis system to enhance biological safety of live attenuated Vibrio anguillarum vaccine. Author: Chu T, Guan L, Shang P, Wang Q, Xiao J, Liu Q, Zhang Y. Journal: Fish Shellfish Immunol; 2015 Aug; 45(2):742-9. PubMed ID: 26052008. Abstract: Bacterial strains used as backbone for the generation of vaccine prototypes should exhibit an adequate and stable safety profile. Given the fact that live attenuated vaccines often contain some potential risks in virulence recovery and spread infections, new approaches are greatly needed to improve their biological safety. Here, a critically iron-regulated promoter PviuA was screened from Vibrio anguillarum, which was demonstrated to respond to iron-limitation signal both in vitro and in vivo. By using PviuA as a regulatory switch to control the expression of phage P22 lysis cassette 13-19-15, a novel in vivo inducible bacterial lysis system was established in V. anguillarum. This system was proved to be activated by iron-limitation signals and then effectively lyse V. anguillarum both in vitro and in vivo. Further, this controllable bacterial lysis system, after being transformed into a live attenuated V. anguillarum vaccine strain MVAV6203, was confirmed to significantly improve biological safety of the live attenuated vaccine without impairing its immune protection efficacy.[Abstract] [Full Text] [Related] [New Search]