These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lentiviral Vector-Mediated FoxO1 Overexpression Inhibits Extracellular Matrix Protein Secretion Under High Glucose Conditions in Mesangial Cells. Author: Guo F, Wang Q, Zhou Y, Wu L, Ma X, Liu F, Huang F, Qin G. Journal: J Cell Biochem; 2016 Jan; 117(1):74-83. PubMed ID: 26052839. Abstract: Diabetic nephropathy is characterized by inordinate secretion of extracellular matrix (ECM) proteins from mesangial cells (MCs), which is tightly associated with excessive activation of TGF-β signaling. The forkhead transcription factor O1 (FoxO1) protects mesangial cells from hyperglycemia-induced oxidative stress, which may be involved in ameliorating the redundant secretion of ECM proteins under high glucose conditions. Here, we reported that high glucose elevated the level of p-Akt to attenuate endogenous FoxO1 bioactivities in MCs, accompanied with decreases in the mRNA expressions of catalase (CAT) and superoxide dismutase 2 (SOD2). Meanwhile, the expressions of major ECM proteins-FN and Col I-increased under high glucose conditions, in consistent with the activation of TGF-β/Smad signaling. By contrast, overexpression of nucleus-localized FoxO1 (insensitive to Akt phosphorylation) directly up-regulated the expressions of anti-oxidative enzymes, accompanied with inactivation of TGF-β/Smad3 pathway, as well as decreases of extracellular matrix proteins. Moreover, similar to those MCs overexpressed of nucleus-localized FoxO1 in high glucose conditions, MCs with down-regulation of FoxO1 by small interference-RNA under normal glucose conditions showed increased FN level and activated TGF-β/Smad3 pathway. Our findings link the anti-oxidative activity of FoxO1 and the TGF-β-induced secretion of ECM proteins, indicating the novel role of FoxO1 in protecting MCs under high glucose conditions.[Abstract] [Full Text] [Related] [New Search]