These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Visualization and finite element analysis of pulsatile flow in models of the abdominal aortic aneurysm.
    Author: Fukushima T, Matsuzawa T, Homma T.
    Journal: Biorheology; 1989; 26(2):109-30. PubMed ID: 2605323.
    Abstract:
    Pulsatile flows in glass models simulating fusiform and lateral saccular aneurysms were investigated by a flow visualization method. When resting fluid starts to flow, the initial fluid motion is practically irrotational. After a short period of time, the flow began to separate from the proximal wall of the aneurysm. Then the separation bubble or vortex grew rapidly in size and filled the whole area of the aneurysm circumferentially. During this period of time, the center of the vortex moved from the proximal end to the distal point of the aneurysm. The transient reversal flow, for instance, which may occur at the end of the ejection period, passed between the wall of the aneurysm and the centrally located vortex. When the rate and pulsatile frequency of flow were high, the vortex broke down into highly disturbed flow (or turbulence) at the distal portion of the aneurysm. The same effect was observed when the length of the aneurysm was increased. A reduction in pulsatile amplitude made the flow pattern close to that in steady flow. A finite element analysis was made to obtain velocity and pressure fields in pulsatile flow through a tube with an axisymmetric expansion. Calculations were performed with the pulsatile flows used in the visualization experiment in order to study the effects of change in the pulsatile wave form by keeping the time-mean Reynolds number and Womersley's parameter unchanged. Calculated instantaneous patterns of velocity field and stream lines agreed well with the experimental results. The appearance and disappearance of the vortex in the dilated portion and its development resulted in complex distributions of pressure and shear fields. Locally minimum and maximum values of wall shear stress occurred at points just upstream and downstream of the distal end of the expansion when the flow rate reached its peak.
    [Abstract] [Full Text] [Related] [New Search]