These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rotational thromboelastometry-guided blood product management in major spine surgery. Author: Naik BI, Pajewski TN, Bogdonoff DI, Zuo Z, Clark P, Terkawi AS, Durieux ME, Shaffrey CI, Nemergut EC. Journal: J Neurosurg Spine; 2015 Aug; 23(2):239-49. PubMed ID: 26053893. Abstract: OBJECT Major spinal surgery in adult patients is often associated with significant intraoperative blood loss. Rotational thromboelastometry (ROTEM) is a functional viscoelastometric method for real-time hemostasis testing. In this study, the authors sought to characterize the coagulation abnormalities encountered in spine surgery and determine whether a ROTEM-guided, protocol-based approach to transfusion reduced blood loss and blood product use and cost. METHODS A hospital database was used to identify patients who had undergone adult deformity correction spine surgery with ROTEM-guided therapy. All patients who received ROTEM-guided therapy (ROTEM group) were matched with historical cohorts whose coagulation status had not been evaluated with ROTEM but who were treated using a conventional clinical and point-of-care laboratory approach to transfusion (Conventional group). Both groups were subdivided into 2 groups based on whether they had received intraoperative tranexamic acid (TXA), the only coagulation-modifying medication administered intraoperatively during the study period. In the ROTEM group, 26 patients received TXA (ROTEM-TXA group) and 24 did not (ROTEM-nonTXA group). Demographic, surgical, laboratory, and perioperative transfusion data were recorded. Data were analyzed by rank permutation test, adapted for the 1:2 ROTEM-to-Conventional matching structure, with p < 0.05 considered significant. RESULTS Comparison of the 2 groups in which TXA was used showed significantly less fresh-frozen plasma (FFP) use in the ROTEM-TXA group than in the Conventional-TXA group (median 0 units [range 0-4 units] vs 2.5 units [range 0-13 units], p < 0.0002) but significantly more cryoprecipitate use (median 1 unit [range 0-4 units] in the ROTEM-TXA group vs 0 units [range 0-2 units] in the Conventional-TXA group, p < 0.05), with a nonsignificant reduction in blood loss (median 2.6 L [range 0.9-5.4 L] in the ROTEM-TXA group vs 2.9 L [0.7-7.0 L] in the Conventional-TXA group, p = 0.21). In the 2 groups in which TXA was not used, the ROTEM-nonTXA group showed significantly less blood loss than the Conventional-nonTXA group (median 1 L [range 0.2-6.0 L] vs 1.5 L [range 1.0-4.5 L], p = 0.0005), with a trend toward less transfusion of packed red blood cells (pRBC) (median 0 units [range 0-4 units] vs 1 unit [range 0-9 units], p = 0.09]. Cryoprecipitate use was increased and FFP use decreased in response to ROTEM analysis identifying hypofibrinogenemia as a major contributor to ongoing coagulopathy. CONCLUSIONS In major spine surgery, ROTEM-guided transfusion allows for standardization of transfusion practices and early identification and treatment of hypofibrinogenemia. Hypofibrinogenemia is an important cause of the coagulopathy encountered during these procedures and aggressive management of this complication is associated with less intraoperative blood loss, reduced transfusion requirements, and decreased transfusion-related cost.[Abstract] [Full Text] [Related] [New Search]