These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: BHRF1 exerts an antiapoptotic effect and cell cycle arrest via Bcl-2 in murine hybridomas.
    Author: Milián E, Prats E, Cairó JJ, Gòdia F, Vives J.
    Journal: J Biotechnol; 2015 Sep 10; 209():58-67. PubMed ID: 26057602.
    Abstract:
    Apoptosis has been widely studied in order to find methods to increase the life-span and production performance in large-scale animal cell cultures. The use of anti-apoptotic genes has emerged as an efficient method to reduce apoptosis in a variety of biotechnological relevant cell lines, including CHO and hybridomas, alternatively to small molecule inhibitors. It is already known that expression of BHRF1, an Epstein-Barr virus-encoded early protein homologous to the anti-apoptotic protein Bcl-2, protects hybridoma cells from apoptosis in batch and continuous operation modes resulting in a delay in the cell death process under glutamine starvation conditions. In the present study, the mechanism of action of BHRF1 was investigated in a murine hybridoma cell line. BHRF1 protein was found in the mitochondrial cell fraction both under normal growing conditions and apoptosis-inducing conditions. Remarkably, the expression of the anti-apoptotic gene bcl2 in BHRF1-expressing cells was up-regulated 25-fold compared to mock-transfected controls under apoptosis triggering conditions and its expression correlated with survival of transgenic cultures and cell cycle arrest in G1. Bcl-2 activity was revealed to be crucial for the BHRF1-mediated effect since the addition of specific inhibitors of Bcl-2 (namely HA14-1 and YC-137) resulted in a loss of function of BHRF1-expressing cells under glutamine starvation conditions. Moreover, the interaction of BHRF1 with the pro-apoptotic BH3-only Bim conferred mitochondrial stability to BHRF1 expressing cells under apoptosis-triggering conditions.
    [Abstract] [Full Text] [Related] [New Search]