These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fibroblast Growth Factor-23 and Vitamin D Metabolism in Subjects with eGFR ≥60 ml/min/1.73 m².
    Author: Nakatani S, Nakatani A, Tsugawa N, Yamada S, Mori K, Imanishi Y, Ishimura E, Okano T, Inaba M.
    Journal: Nephron; 2015; 130(2):119-26. PubMed ID: 26068724.
    Abstract:
    BACKGROUND/AIMS: Fibroblast growth factor (FGF)-23 and parathyroid hormone (PTH) are both potent phosphaturic hormones. Since they exert opposite effects on vitamin D metabolism, the measurement of 3 vitamin D metabolites; 25-hydroxyvitamin D (25-OH-D), 1,25-dihydroxyvitamin D (1,25(OH)2D), and 24,25-dihydroxyvitamin D (24,25(OH)2D), allows the distinction of the effects of FGF-23 from those of PTH. The aim of this study was to elucidate which factor, FGF-23 or PTH, plays a more important role in the regulation of vitamin D metabolites in subjects with estimated glomerular filtration (eGFR) ≥60 ml/min/1.73 m(2). METHODS: Subjects with eGFR ≥60 ml/min/1.73 m(2) (n = 20) were enrolled and their serum levels of FGF-23, intact PTH, and vitamin D metabolites were determined. RESULTS: Serum FGF-23 correlated inversely with 1,25(OH)2D (r = -0.717, p = 0.0004) and the 1,25(OH)2D/25-OH-D ratio (r = -0.518, p = 0.019), compared with a significant positive correlation between serum intact PTH and the 1,25(OH)2D/25-OH-D ratio (r = 0.562, p = 0.010). Multiple regression analyses revealed serum FGF-23 as a significant factor that was associated with serum 1,25(OH)2D (β = -0.593, p = 0.018), 1,25(OH)2D/25-OH-D ratio (β = -0.521, p = 0.025), and the 24,25(OH)2D/1,25(OH)2D ratio (β = 0.632, p = 0.008), and intact PTH as a significant factor associated with the 1,25(OH)2D/25-OH-D ratio (β = 0.445, p = 0.028). CONCLUSIONS: This study demonstrated that, even in subjects with eGFR ≥60 ml/min/1.73 m(2), FGF-23 might play an important role in the regulation of vitamin D metabolism. In addition to the established role of PTH, the association between FGF-23 and indices of vitamin D metabolism suggested the potential role of FGF-23 on phosphate metabolism in such patients.
    [Abstract] [Full Text] [Related] [New Search]